Ries, Maximilian, Dr.-Ing.
Dr.-Ing. Maximilian Ries
-
Teilprojekt P6 - Fracture in Thermoplastics: Discrete-to-Continuum
(Third Party Funds Group – Sub project)
Overall project: Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
Term: 2. January 2019 - 31. December 2027
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.frascal.research.fau.eu/home/research/p-6-fracture-in-thermoplastics-discrete-to-continuum/Nanocomposites have great potential for various applications since their properties may be tailored to particular needs. One of the most challenging fields of research is the investigation of mechanisms in nanocomposites which improve for instance the fracture toughness even at very low filler contents. Several failure processes may occur like crack pinning, bi-furcation, deflections, and separations. Since the nanofiller size is comparable to the typical dimensions of the monomers of the polymer chains, processes at the level of atoms and molecules have to be considered to model the material behaviour properly. In contrast, a pure particle-based description becomes computationally prohibitive for system sizes relevant in engineering. To overcome this, only e.g. the crack tip shall be resolved to the level of atoms or superatoms in a coarse-graining (CG) approach.
Thus, this project aims to extend the recently developed multiscale Capriccio method to adaptive particle-based regions moving within the continuum. With such a tool at hand, only the vicinity of a crack tip propagating through the material has to be described at CG resolution, whereas the remaining parts may be treated continuously with significantly less computational effort.
-
Identification of interphase properties in nanocomposites
(Third Party Funds Single)
Term: 15. October 2018 - 31. January 2024
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)In engineering applications, plastics play an important role and offer new possibilities to achieve and to adjust a specific material behaviour. They consist of long-chained polymers and possess, together with additives, an enormous potential for tailored properties.
Recently, techniques have been established to produce and to disperse filler particles with typical dimensions in the range of nanometers. Even for low volume contents of filler particles, these socalled nanofillers may have significant impact on the properties of plastics. This can be most likely traced back to their very large volume-to-surface ratio. In this context, the polymer-particle interphase is of vital importance: as revealed by experiments, certain nanofillers may e.g. increase the fatigue lifetime of plastics by a factor of 15.
The effective design of such nanocomposites quite frequently requires elaborated mechanical testing, which might - if available - be substituted or supplemented by simulations. For this purpose, however, continuum mechanics together with the Finite Element Method (FE) as the usual tool for engineering applications is not well-suited since it is not able to capture processes at the molecular level. Therefore, particle-based techniques such as molecular dynamics (MD) have to be employed. However, these typically allow only for extremely small system sizes and simulation times. Thus, a multiscale technique that couples both approaches is required to enable the simulation of so-called representative volume elements (RVE) under consideration of atomistic effects.
The goal of this 4-year project is the development of a methodology which yields a continuum-based description of the material behaviour of the polymer-particle interphase of nanocomposites, whereby the required constitutive laws are derived from particle-based simulations. Due to their very small dimensions of some nanometers, the interphases cannot be accessed directly by experiments and particle-based simulations must substitute mechanical testing. The recently developed Capriccio method, designed as a simulation tool to couple MD and FE descriptions for amorphous systems, will be employed and refined accordingly in the course of the project.
In the first step, the mechanical properties of the polymer-particle interphase shall be determined by means of inverse parameter identification for small systems with one and two nanoparticles. In the second step, these properties shall be transferred to large RVEs. With this methodology at hand, various properties as e.g. the particles’ size and shape as well as grafting densities shall be mapped from pure particle-based considerations to continuum-based descriptions. Further consideration will then offer prospects to transfer the material description to applications relevant in engineering and eventually suited for the simulation of parts.
2024
Revealing the percolation–agglomeration transition in polymer nanocomposites via MD-informed continuum RVEs with elastoplastic interphases
In: Composites Part B-Engineering 281 (2024), Article No.: 111477
ISSN: 1359-8368
DOI: 10.1016/j.compositesb.2024.111477
, , , , :
Impact of the unimodal molar mass distribution on the mechanical behavior of polymer nanocomposites below the glass transition temperature: A generic, coarse-grained molecular dynamics study
In: European Journal of Mechanics A-Solids 107 (2024), Article No.: 105379
ISSN: 0997-7538
DOI: 10.1016/j.euromechsol.2024.105379
, , , :
Evaluating the impact of filler size and filler content on the stiffness, strength, and toughness of polymer nanocomposites using coarse-grained molecular dynamics
In: Engineering Fracture Mechanics 307 (2024), Article No.: 110270
ISSN: 0013-7944
DOI: 10.1016/j.engfracmech.2024.110270
, , , , :
2023
Studying the mechanical behavior of a generic thermoplastic by means of a fast coarse-grained molecular dynamics model
In: Polymers and Polymer Composites 31 (2023)
ISSN: 1478-2391
DOI: 10.1177/09673911231208590
, , :
Characterization and modeling of polymer nanocomposites across the scales - A comprehensive approach covering the mechanical behavior of matrix, filler, and interphase (Dissertation, 2023)
DOI: 10.25593/opus4-fau-23638
:
Characterization of the material behavior and identification of effective elastic moduli based on molecular dynamics simulations of coarse-grained silica
In: Mathematics and Mechanics of Solids 28 (2023)
ISSN: 1081-2865
DOI: 10.1177/10812865221108099
, , , , :
Extending a generic and fast coarse-grained molecular dynamics model to examine the mechanical behavior of grafted polymer nanocomposites
In: Forces in Mechanics 12 (2023), Article No.: 100207
ISSN: 2666-3597
DOI: 10.1016/j.finmec.2023.100207
, , , :
Investigation of the influence of nano-sized particles on the entanglement distribution of a generic polymer nanocomposite using molecular dynamics
In: Mathematics and Mechanics of Solids 29 (2023), p. 596-611
ISSN: 1081-2865
DOI: 10.1177/10812865231206547
, , :
On equilibrating non-periodic molecular dynamics samples for coupled particle-continuum simulations of amorphous polymers
In: Forces in Mechanics 10 (2023), Article No.: 100159
ISSN: 2666-3597
DOI: 10.1016/j.finmec.2022.100159
URL: https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-200639
, , , , :
2022
Accelerating molecular dynamics simulations by a hybrid molecular dynamics-continuum mechanical approach
In: Soft Materials (2022)
ISSN: 1539-445X
DOI: 10.1080/1539445X.2022.2061513
, , :
Addressing Surface Effects at the Particle-Continuum Interface in a Molecular Dynamics and Finite Elements Coupled Multiscale Simulation Technique
In: Journal of Chemical Theory and Computation 18 (2022), p. 2375--2387
ISSN: 1549-9618
DOI: 10.1021/acs.jctc.1c00940
, , , :
Characterization of the material behavior and identification of effective elastic moduli based on molecular dynamics simulations of coarse-grained silica
In: Mathematics and Mechanics of Solids (2022)
ISSN: 1081-2865
DOI: 10.1177/10812865221108099
, , , , :
Applying a generic and fast coarse-grained molecular dynamics model to extensively study the mechanical behavior of polymer nanocomposites
In: eXPRESS Polymer Letters 16 (2022), p. 1304-1321
ISSN: 1788-618X
DOI: 10.3144/expresspolymlett.2022.94
, , , :
A quantitative interphase model for polymer nanocomposites: Verification, validation, and consequences regarding size effects
In: Composites Part A-Applied Science and Manufacturing 161 (2022), Article No.: 107094
ISSN: 1359-835X
DOI: 10.1016/j.compositesa.2022.107094
, , , , :
2021
Revised Boundary Conditions for FE-MD Multiscale Coupling of Amorphous Polymers
VIII Conference on Mechanical Response of Composites (Online, 22. September 2021 - 24. September 2021)
DOI: 10.23967/composites.2021.014
URL: https://www.scipedia.com/public/Ries_et_al_2021c
, , , :
A coupled MD-FE methodology to characterize mechanical interphases in polymeric nanocomposites
In: International Journal of Mechanical Sciences (2021), p. 106564
ISSN: 0020-7403
DOI: 10.1016/j.ijmecsci.2021.106564
, , , :
The Hybrid Capriccio Method: A 1D Study for Further Advancement
14th World Congress on Computational Mechanics (WCCM) (, 11. January 2021 - 11. January 2021)
In: F. Chinesta, R. Abgrall, O. Allix, M. Kaliske (ed.): Multiscale and Multiphysics Systems, 2021 2021
DOI: 10.23967/wccm-eccomas.2020.335
, , :
Multiscale FE-MD Coupling: Influence of the Chain Length on the Mechanical Behavior of Coarse-Grained Polystyrene
14th World Congress on Computational Mechanics (WCCM) (, 11. January 2021 - 15. January 2021)
In: F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (ed.): Multiscale and Multiphysics Systems, 2021 2021
DOI: 10.23967/wccm-eccomas.2020.214
, , , , :
A viscoelastic-viscoplastic constitutive model for glassy polymers informed by molecular dynamics simulations
In: International Journal of Solids and Structures (2021), p. 111071
ISSN: 0020-7683
DOI: 10.1016/j.ijsolstr.2021.111071
, , , :
2020
Characterization of Polystyrene Under Shear Deformation Using Molecular Dynamics
In: Developments and Novel Approaches in Nonlinear Solid Body Mechanics, Springer, Cham, 2020, p. 219-229
ISBN: 9783030504595
DOI: 10.1007/978-3-030-50460-1_14
, , :
2019
Extensive CGMD simulations of atactic PS providing pseudo experimental data to calibrate nonlinear inelastic continuum mechanical constitutive laws
In: Polymers 11 (2019), Article No.: 1824
ISSN: 2073-4360
DOI: 10.3390/polym11111824
, , , :
Investigation of the Mechanical Behavior of Polystyrene using Molecular Dynamics
In: Proceedings in Applied Mathematics and Mechanics 19 (2019)
ISSN: 1617-7061
DOI: 10.1002/pamm.201900015
, , :